Идеал газдың ішкі энергиясы. Термодинамикадағы жұмыс. Жылу мөлшері, жылу сыйымдылық. Физика, 10 сынып, дидактикалық материал.


Идеал газдың ішкі энергия

Ішкі энергия – дененің (жүйенің) тек ішкі күйіне байланысты энергия. Ішкі энергияға дененің барлық микробөлшектерінің (молекулалардыңатомдардыңиондардың, т.б.) ретсіз (хаосты) қозғалыстарының энергиясы, микробөлшектердің өзара әсерлесу энергиясыатомдар мен молекулалардың ішкі энергиясы, т.б. жатады. Ішкі энергия ұғымын 1851 жылы У.Томсон енгізген.

Дененің бір күйден екінші күйге ауысу барысындағы ішкі энергиясының өзгерісі (ΔU) мынаған тең: ΔU = ΔQ–A, мұндағы Q – жүйенің қоршаған ортамен алмасқан жылу мөлшері, А – істелген жұмыс. Бұл теңдеу жылу алмасу процесі басты рөл атқаратын жүйелердегі энергияның сақталу және айналу заңын (термодинамиканың бірінші бастамасын) өрнектейді. Энергияның сақталу заңына сәйкес Ішкі энергия физикалық жүйе күйінің, яғни осы күйді анықтайтын тәуелсіз айнымалылардың (мысалы, температуракөлем не қысым), бір мәнді функциясы болады. Q және А шамаларының әрқайсысы жүйені ішкі энергиясы U1-ге тең күйден U2-ге тең күйге ауыстыратын процестің сипатына тәуелді болады, ал ΔU=U2–U1.

Жүйе бастапқы күйіне қайтып келетін (U2-U1) кез келген тұйық процесс үшін ішкі энергияның өзгерісі (ΔU) нөлге тең және Q=A (қ. Дөнгелек процесс). Адиабаттық процесте (қоршаған ортамен жылу алмасу болмаған, яғни Q=0 жағдайда) жүйенің ішкі энергияның өзгерісі жүйенің істеген жұмысына не жүйеге жасалған жұмысқа тең. Газдардың кинетикалық теориясы бойынша идеал газдар Ішкі энергиясының өзгеруі нәтижесінде, температураға байланысты молекулалардың кинетикалық энергиясы өзгереді. Сондықтан идеал газдың (немесе қасиеттері сол идеал газға жуық газдардың) Ішкі энергиясының өзгерісі тек оның температурасының өзгерісімен анықталады (Джоуль заңы). Бөлшектері өзара әсерлесетін физикалық жүйелерде (реал газдарда, сұйықтықтарда, қатты денелерде) молекулааралық және молекула ішіндегі өзара әсер энергиялары да ішкі энергияға жатады. Мұндай жүйелерде ішкі энергия температурамен қатар қысым мен көлемге де тәуелді болады. Абсалют нөлге жуық (–273,16°С) төмен температуралар аймағында конденсацияланған жүйелер (сұйық және қатты дене) ішкі энергиясының температураға тәуелділігі жойылып, ол белгілі бір тұрақты мәнге (U0) – “нөлдік энергия” дейтін мәнге ұмтылады (термодинамиканың үшінші бастамасы). Ішкі энергия негізгі термодинамиқалық потенциалдардың бірі болып есептеледі

Көп атомды газдың ішкі энергиясы

 Көп атомды газдың ішкі энергиясы дегеніміз – серпімді шариктер деп қарастыруға болатын молекулалардың ілгерілемелі қозғалыстың орташа кинетикалық энергиясы. Егер екі атомды газды алсақ, онда бізге атомдармен емес, молекулалармен жұмыс істеуге тура келеді, ал олар түрлене де алады. Сондықтан, екі атомды идеал газдың ішкі энергиясы молекулалардың ілгерлемелі қозғалысының кинетикалық энергиясы мен айналмалы қозғалысының кинетикалық энергиясының қосындысына тең. Газ әртүрлі жылдамдықпен қозғалатын, олай болса белгілі кинетикалық энергиясы бар молекулалардан тұрады.

 Барлық газ молекулаларының толық энергиясы газдың ішкі энергиясы деп аталады.

 Жалпы газдың ішкі энергиясы молекулалардың барлық энергияларының қосындысына тең. Идеал газдың молекулалары бір - бірімен әсерлеспегендіктен,олардың потенциалдық энергиясы болмайды. Сондықтан идеал газ молекуласының толық энергиясы сол молекулалардың ілгерілемелі, айналмалы, кейде тербелмелі қозғалыстарының кинетикалық энергияларының қосындысынан тұрады.

 Дененің ілгерілемелі қозғалысын координат жүйесінің үш осінің бойымен болатын бір - біріне тәуелсіз үш қозғалысқа жіктеуге болады. Максвеллдің ұсынуы бойынша бұл тәуелсіз қозғалыстарды молеула қозғалысының еркіндік дәрежесі деп атайды. Еркіндік дәрежесінің саны тәуелсіз координаттарының санына тең. Олай болса еркіндік дәрежесі деп дененің (молекуланың) кеңістіктегі орнын анықтайтын тәуелсіз координаттардың санын айтады.

 Ілгерілемелі қозғалатын кез - келген молекуланың еркіндік дәрежесі үшеу. Молекуланың классикалық кинетикалық теориясы бойынша бір атомнан тұратын ондай молекула идеал тегіс қатты шар деп алынады да, ол соқтығысқанда да айналмалы қозғалмай, тек ілгерілемелі қозғалады. Сондықтан ілгерілемелі қозғалатын бір атомды молекуланың үш еркіндік дәрежесі бар деп қорытындылаймыз.

U=  R T і- еркіндік дәрежесі U=  R T –Бір атомды идеал газдың ішкі энергиясы U=  R T - екі атомды идеал газдың ішкі энергиясы U=  R T - үш атомды идеал газдың ішкі энергиясы

Идеал газдардың iшiнде өзiнiң физикалық қасиеттерi бойынша қарапайым болып табылатын газ - бiр атомды газ (гелий, неон, аргон және т.б.).

Бiр атомды газдың iшкi энергиясы. Идеал газдың барлық iшкi энергиясы оның молекулаларының қалыптаспаған қозғалысының кинетикалық энергиясы болып табылады. Массасы m бiр атомды газ үшiн ол бiр атомның орташа кинетикалық энергиясының E = 3kT/2 жалпы атомдар санына N = mNa/M көбейткенге тең. kNa = R екенiн ескерiп, мынаны табамыз:

U = 3mRT/2M. (3.6)

Бiр атомды идеал газдың iшкi энергиясы, молекулаларының өзара әсерлесуiнiң потенциалдық энергиясы нөлге тең болғандықтан, көлемге (қысымға) байланысты емес. Тек газ температурасының өзгеруiнiң есебiнен ғана газдың энергиясы өзгередi. Нақты газдар және сұйықтар үшiн молекулалардың орташа потенциалдық энергиясы нөлден өзгеше. Газдарда ол кинетикалық энергиямен салыстырғанда өте аз, ал сұйықтар мен қатты денелер үшiн кинетикалық энергиямен шамалас болып келедi. Демек, жалпы жағдайда, iшкi энергия потенциалдық энергия сияқты қозғалмалы ортаның көлемiне, температурасына тәуелдi болады.

Термодинамикадағы жұмыс

Термодинамикада қозғалыстағы ортаның аз бөлшектерiнiң бiр-бiрiне қатысты орын ауыстыруы ғана қарастырылады. Нәтижесiнде дене көлемi, оның iшкi энергиясы өзгередi. Дене жылдамдығы тұтасымен алғанда нөлге тең болып қалады. Жұмыс классикалық механикадағы сияқты анықталады, бiрақ ол дененiң кинетикалық энергисының өзгеруiне емес, оның iшкi энергиясының өзгеруiне тең болады. Мысалы, газдардың сығылуы кезiнде поршень өзiнiң механикалық энергиясының бiр бөлiгiн газдарға бергендiктен, молекулалардың кинетикалық энергиясы ұлғаяды, газ қызады. Керiсiнше, егер газ ұлғайса, онда алыстаған поршенмен соқтығысқаннан кейiн молекулалардың жылдамдығы азайып, газ суиды.

Жұмысты есептеу. Қозғалмалы ортаның көлемi өзгергендегi iстелген жұмыс мынаған тең болады: А′ = p·(V2-V1) = p·ΔV.

Тұрақты қысым жағдайында, газдың жұмысы геометриялық тұрғыдан түсiндiргенде 3.1.–суретiнде келтiрiлген

(P-V) графигiндегi V1АВV2 тiк төртбұрышының ауданына дәлме-дәл тең екендiгiн оңай көруге болады. Жалпы жағдайда газ қысымы көлемге байланысты функция болып табылады. Бiрақ, газ жұмысы бұрынғысынша сандық түрде бастапқы және соңғы күйлердегi p1 және p2 қысымдарына тең AV1 және AV2 кесiндiлерiмен және P-ның V-ға байланысты графигiмен шектелген фигураның ауданына тең болады(3.2-сурет).

Жылу мөлшері

Жұмыс жасалынбай-ақ, бiр денеден екiншi денеге энергияның берiлу процесi жылу алмасу немесе жылу берiлу деп аталады. Жылу алмасу кезiндегi iшкi энергияның өзгеруiнiң мөлшерлiк шамасын жылу мөлшерi деп атайды. Жылу алмасудың үш түрi бар - жылуөткiзгiштiк, конвекция және сәуле шашу (сәулелi жылу алмасу) (3.3 - сурет).

Меншiктi жылу сыйымдылығы. Массасы m дененi t1 температурадан t1 температураға дейiн қыздыру үшiн оған мынадай жылу мөлшерiн беру қажет: Q = c·m·(t2 -t1) = c·m·Δt.

Бұл қатынас дененiң сууы кезiнде де орындалады, бiрақ ол жағдайда жылу мөлшерi терiс болады, себебi Δt<0. Пропорционалдық коэффициент с меншiктi жылу сыйымдылығы деп аталады.

Меншiктi жылу сыйымдылығы деп температурасы 1o К-ге өзгергендегi массасы 1 кг дененiң алған немесе берген жылу мөлшерiн айтамыз.

Меншiктi жылу сыйымдылығы c заттың физикалық қасиеттерiне қалай байланысты болса, жылу алмасуы жүретiн процестiң түрiне де солай байланысты болады.

Буға айналудың меншiктi жылуы. Сұйықты буға айналдыру үшiн оған белгiлi бiр жылу мөлшерiн беру қажет.

кг сұйықты тұрақты температурада буға айналдыру үшiн қажет болатын жылу мөлшерiн заттың буға айналуының меншiктi жылуы деп атайды. Бұл шама r символымен белгiленедi және СИ жүйесiнде Дж/кг-мен өлшенедi.

Массасы m сұйықты буға айналдыру үшiн мынадай жылу мөлшерi қажет:

Qбу = r·m. (3.3)

Конденсация кезiнде дәл сондай жылу мөлшерi бөлiнедiQбу = - rm.

Балқудың меншiктi жылуы. Дене тұрақты температурада балқиды. Молекулалардың кинетикалық энергиясы өзгермейдi, барлық берiлетiн жылу олардың потенциалдық энергиясын ұлғайтуға шығындалады.

кг затты сол температурадағы сұйыққа айналдыруға қажет болатын жылу мөлшерiн балқудың меншiктi жылуы λ (Дж/кг) деп атайды.

Массасы m болатын кристаллдық дененi балқыту үшiн мынадай жылу мөлшерi қажет:

Qбал = λ·m (3.4)

Жылу балансының теңдеуi. Тұйық жүйедегi жылу алмасу кезiнде, оның iшкi энергиясының қосындысы өзгермейдi. Кез келген жеке алынған дененiң энергиясының өзгерiсi жылулық тепе-теңдiк басталғанға дейiнгi дененiң берген немесе алған жылу мөлшерiне тең: ΔUi = Qi. Барлық денелер үшiн бұл шамаларды қосып және жүйенiң жинақталған iшкi энергисы тұрақты екенiн ескерiп, мынаны аламыз: ΔU1 + ΔU2 + ΔU3 +... = 0. Бұдан мына теңдеу шығады:

Q1 + Q2 + Q3 +… = 0. (3.5)

Бұл теңдеу жылу балансының теңдеуi деп аталады. Мұндағы Q1Q2Q3,..- жылу алмасу процесi кезiндегi дененiң берген немесе алған жылу мөлшерлерi. Олар жоғарыда көрсетiлген формулалармен өрнектеледi.



Толық нұсқасын 30 секундтан кейін жүктей аласыз!!!


Әлеуметтік желілерде бөлісіңіз:
Facebook | VK | WhatsApp | Telegram | Twitter

Қарап көріңіз 👇



Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру

Соңғы жаңалықтар:
» Қазақстандықтар шетелге шығуға жылына қанша жұмсайды?
» Су тасқынынан зардап шеккендерге қосымша тағы 553 мың теңге төленеді
» Елімізде TikTok желісі бұғатталуы мүмкін бе?
Пікір жазу