» » » Дипломная работа: Современное развитие нанотехнологии

Дипломная работа: Современное развитие нанотехнологии

Дипломная работа: Современное развитие нанотехнологии казакша Дипломная работа: Современное развитие нанотехнологии на казахском языке
Содержание
ВВЕДЕНИЕ

1 ОСНОВНОЕ ОПРЕДЕЛЕНИЕ И НАУЧНЫЕ ОСНОВЫ НАНОТЕХНОЛОГИЙ. ИСТОРИЯ НАНОТЕХНОЛОГИЙ. НАНОЧАСТИЦЫ. НАНОМАТЕРИАЛЫ.
1.1 Приоритетные направления нанотехнологии и основные тенденции развития.
1.2 Подходы нанотехнологии. «Сверху-вниз», «снизу-вверх». Принципы манипуляции атомами и молекулами
2 МЕТОДЫ ИСЛЕДОВАНИЯ НАНОРАЗМЕРНЫХ ОБЪЕКТОВ. ОСНОВНЫЕ ДОСТИЖЕНИЯ НАНОТЕХНОЛОГИИ.
2.1 Сканирующая зондовая микроскопия. Основные принципы (СЗМ).
2.2 Электронная микроскопия. Оптическая микроскопия.
3 НАНОТЕХНОЛОГИЯ И НАНОМЕТРОЛОГИЯ

3.1 Метрологическое обеспечение, стандартизация и оценка соответствия нанотехнологий и нанопродукции.

3.2 Метрологическое обеспечение измерений длины в микрометровом и нанометровом диапазонах и их внедрение в микроэлектронику и нанотехнологию.

ОСНОВНОЕ ОПРЕДЕЛЕНИЕ И НАУЧНЫЕ ОСНОВЫ НАНОТЕХНОЛОГИЙ. ИСТОРИЯ НАНОТЕХНОЛОГИЙ. НАНОЧАСТИЦЫ. НАНОМАТЕРИАЛЫ.

В последнее время в наше сознание быстро вошло модное и короткое слово «нано» с большим потенциалом. Прогресс естественных и инженерных наук привел к началу XXI века рождение новой научно-технической отрасли, получившей название «нанотехнология». В настоящее время нанотехнология превратилась из научного лозунга о перспективах в индустриальное стратегическое направление, которое в ближайшем будущем определит лиде- ров мирового экономического роста.
Мировым сообществом ученых развитие нанотехнологий признано самым перспективным направлением XXI века. Сформировалась новая индустриальная область нанонаука, рассматриваемая как совокупность знаний о фундаментальных свойствах вещества в нанометровом масштабе. Ее результаты реализуются в нанотехнологии путем создания новых материа- лов, функциональных структур и устройств, использующих атомные, молекулярные и нано- метровые уровни.
Приставка нано - (от греческого NANNOS - карлик, гном) означает одну миллиардную (10 -9) долю чего-либо. Один нанометр (сокращенно 1 нм) равен 1/100000000000 метра или — это ряд всего из десяти атомов водорода. Чтобы человек представил этот масштаб, приведены примеры, что, толщина человеческого волоса составляет примерно 50000 нанометров, клетка бактерии измеряется несколькими сотнями нанометров, а наименьшие элементы в микрочипах электроники составляют 130 нанометров. Нанотехнология имеет дело с разнообразными структурами вещества, характерный размер которых порядка миллиардных долей метра. Хотя слово нанотехнология является относительно новым, устройства и структуры нанометровых размеров не новы.
Прогнозируемый вклад нанотехнологии в развитие человечества до 2025 года станет сравнимым с влиянием информационных технологий.
Таким образом, нанотехнология — это совокупность методов производства веществ с заданной атомарной структурой путем манипуляции с самыми маленькими физическими субстанциями — атомами и молекулами.
Первооткрывателем нанотехнологий можно считать греческого философа Демокрита. Именно он впервые использовал слово «атом» для описания самой малой частицы вещества.
В начале XX века знаменитый физик А.Эйнштейн доказал, что размер молекулы сахара составляет примерно 1 нанометр.
Немецкие физики М.Кнолл и Э.Руска в начале 1930 годов прошлого столетия создали электронный микроскоп, который впервые позволил исследовать наноструктуры.
1959 году американский физик Р.Фейнман научно доказал, что с точки зрения фундаментальных законов физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов.
В конце 60-х годов XX века научные сотрудники американской компании Белл (Bell), Альфред Чо и Дж. Артур, разработали теоретические основы нанообработки поверхностей.
Японский физик Н.Танигучи в 1974 ввел в научный оборот слово «нанотехника», предложив называть так механизмы размером менее одного микрона.
В 1981 году, лауреаты Нобелевской премии, немецкие физики Г.Биннинг и Г.Рорер создали сканирующий туннельный микроскоп — прибор, позволяющий осуществлять воздействие на вещество на атомарном уровне.
В середине 80-х годов прошлого столетия американские физики Р.Кэрл, Х.Крото и Р.Смолли создали технологию, позволяющую точно измерять предметы диаметром в один нанометр. Создан атомно-силовой микроскоп, позволяющий, в отличие от туннельного микроскопа, осуществлять взаимодействие с любыми материалами, а не только производящими.
Американский футуролог Э.Дрекслер издал книгу для широкой публики об активном развитии нанотехнологии в жизнедеятельности человека.
В конце прошлого столетия Д.Эйглер, сотрудник компании IBM (США), выложил название своей фирмы атомами ксенона. А голландский физик С.Деккер создал нанотранзистор.
Основным определением нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустроиств и материалов со специальными физическими, химическими и биологическими свойствами.
Нанотехнологий— совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществить их интеграцию в полноценно функционирующие системы большого масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов". Нанотехнологии: любые технологии создания объектов, потребительские свойства которых определяются необходимостью контроля и манипулирования отдельными наноразмерными объектами. Нанотехнологические процессы могут проводиться в различных средах: вакууме, газах и жидкостях. В вакууме, в основном, проводятся процессы полевого испарения материала с иглы на подложку и наоборот. Значительно большие технологические возможности открываются в установках с напуском технологических газов. В газовых средах проводят локальные химические реакции, позволяющие, по сравнению с вакуумными установками, расширить диапазон используемых материалов, повысить производительность технологических установок.Часто употребляемое определение нанотехнологии как комплекса методов работы с объектами размером менее 100 нанометров недостаточно точно описывает как объект, так и отличие нанотехнологии от традиционных технологий и научных дисциплин.
Объекты нанотехнологий, с одной стороны, могут иметь характеристические размеры указанного диапазона:
• наночастицы, нанопорошки (объекты, у которых три характеристических размера находятся в диапазоне до 100 нм);
• нанотрубки, нановолокна (объекты, у которых два характеристических размера находятся в диапазоне до 100 нм);
• наноплёнки (объекты, у которых один характеристический размер находится в диапазоне до 100 нм).
С другой стороны, объектами нанотехнологий могут быть макроскопические объекты, атомарная структура которых контролируемо, создаётся с разрешением на уровне отдельных атомов. Нанотехнологии качественно отличаются от традиционных дисциплин, поскольку на таких масштабах привычные, макроскопические, технологии обращения с материей часто неприменимы, а микроскопические явления, пренебрежительно слабые на привычных масштабах, становятся намного значительнее: свойства и взаимодействия отдельных атомов и молекул или агрегатов молекул, квантовые эффекты. В практическом аспекте это технологии производства устройств и их компонентов, необходимых для создания, обработки и манипуляции атомами, молекулами и частицами, размеры которых находятся в пределах от 1 до 100 нанометров. Однако нанотехнология сейчас находится в начальной стадии развития, поскольку основные открытия, предсказываемые в этой области, пока не сделаны. Тем не менее, проводимые исследования уже дают практические результаты. Использование в нанотехнологии передовых научных результатов позволяет относить её к высоким технологиям. При работе с такими малыми размерами проявляются квантовые эффекты и эффекты межмолекулярных взаимодействий, такие как Ван-дер-Ваальсовы взаимодействия. Нанотехнология и, в особенности, молекулярная технология — новые области, очень мало исследованные. Развитие современной электроники идёт по пути уменьшения размеров устройств. С другой стороны, классические методы производства подходят к своему естественному экономическому и технологическому барьеру, когда размер устройства уменьшается не намного, зато экономические затраты возрастают экспоненциально. Нанотехнология — следующий логический шаг развития электроники и других наукоёмких производств. Большое распространение получили такие термины с приставкой «нано», как «нанотехнология», «наноматериалы», «наносистема».
Нанотехнология – совокупность методов и способов синтеза, сборки, структуро- и формообразования, нанесения, удаления и модифицирования материалов, включая систему знаний, навыков, умений, аппаратурное, материаловедческое, метрологическое, информационное обеспечение процессов и технологических операций, направленных на создание материалов и систем с новыми свойствами, обусловленными проявлением наномасштабных факторов.
Наносистема – материальный объект в виде упорядоченных или самоупорядоченных, связанных между собой элементов с нанометрическими характеристическими размерами, кооперация которых обеспечивает возникновение у объекта новых свойств, проявляющихся в виде квантово-размерных, синергетически-кооперативных, «гигантских» эффектов и других явлений и процессов, связанных с проявлением наномасштабных факторов.
Наноматериалы – вещества и композиции веществ, представляющие собой искусственно или естественно упорядоченную или неупорядоченную систему базовых элементов с нанометрическими характеристическими размерами и особым проявлением физического и (или) химического взаимодействий при кооперации наноразмерных элементов, обеспечивающих возникновение у материалов и систем совокупности ранее неизвестных механических, химических, электрофизических, оптических, теплофизических и других свойств, определяемых проявлением наномасштабных факторов.
Наносистемотехника – совокупность методов моделирования, проектирования и конструирования изделий различного функционального назначения, в том числе наноматериалов, микро- и наносистем с широким использованием квантово-размерных, кооперативно-синергетических, гигантских эффектов и других явлений и процессов, проявляющихся в условиях материальных объектов с нанометрическими характеристическими размерами элементов.
Наночастицы (нанопорошки) – это малоразмерные твердые вещества, геометрический размер которых изменяется от десятых долей до 100 нм. Понятия «наночастицы» и «нанопорошки» во многом перекрываются, но, конечно, следует иметь в виду возможный изолированный характер первых и обязательно совокупный вид последних (порошок - это совокупность находящихся в соприкосновении индивидуальных твердых частиц небольших размеров (от 0,001 до 103 мкм)).
Считается, что наночастицы с уменьшением размера переходят в кластеры, содержащие от 10 до нескольких тысяч атомов (по разным данным, примерно до 2000 - 10 000). Полагают также, что для кластеров, в отличие от кристаллических частиц, характерна потеря трансляционной симметрии. К наночастицам сейчас относят и полупроводниковые квантовые точки, и полимерные дендримеры. .Современная тенденция к миниатюризации показала, что вещество может иметь совершенно новые свойства, если взять очень маленькую частицу этого вещества. Частицы, размерами от 1 до 1000(свыше 100 нанометров наночастицами можно назвать их условно) нанометров обычно называют «наночастицами». Так, например, оказалось, что наночастицы некоторых материалов имеют очень хорошие каталитические и адсорбционные свойства. Другие материалы показывают удивительные оптические свойства, например, сверхтонкие пленки органических материалов применяют для производства солнечных батарей. Такие батареи, хоть и обладают сравнительно низкой квантовой эффективностью, зато более дешевы и могут быть механически гибкими. Удается добиться взаимодействия искусственных наночастиц с природными объектами наноразмеров — белками, нуклеиновыми кислотами и др. Тщательно очищенные, наночастицы могут самовыстраиваться в определенные структуры. Такая структура содержит строго упорядоченные наночастицы и также зачастую проявляет необычные свойства.
Далее перечислены лишь некоторые из приоритетных направлений нанотехнологии, разрабатывающих новые перспективные методы, материалы и устройства:
• молекулярный дизайн материалов и веществ с заданными свойствами, значительно превосходящими свойства их современных аналогов;
• нанопроцессоры с низким уровнем энергопотребления и существенно более высокой производительностью;
• небольшие по размеру запоминающие устройства с огромным (мультитерабитным) объемом памяти;
• новые лекарственные препараты и методы их введения в организм (проблемы сверхмалых доз и их адресной доставки);
• новые методы мониторинга окружающей среды и организма человека с использованием наносенсоров.
Среди наноматериалов можно выделить несколько основных разновидностей: консолидированные материалы, нанополупроводники, нанополимеры, нанобиоматериалы, фуллерены и тубулярные наноструктуры, катализаторы, нанопористые материалы и супрамолекулярные структуры.
К консолидированным наноматериалам относят компакты, пленки и покрытия из металлов, сплавов и соединений, получаемые методами порошковой технологии, интенсивной пластической деформации, контролируемой кристаллизации из аморфного состояния и разнообразными приемами нанесения пленок и покрытий.
Нанополупроводники, нанополимеры и нанобиоматериалы могут быть как в изолированном, так и частично в консолидированном состоянии, образуя также гибридные (смешанные) материалы.
Нанопористые материалы характеризуются размером пор менее 100 нм.
Фуллерены и тубулярные наноструктуры стали предметом многочисленных исследований, начиная с 1985 г., когда была идентифициро-
вана новая аллотропная форма углерода - кластеры С60 и С70, названные фуллеренами (работы нобелевских лауреатов Н.Крото, Р.Керлу и Р.Смолли), и особенно с 1991 г., когда японский ученый С.Ишима обнаружил углеродные нанотрубки в продуктах электродугового испарения графита. Фуллерены — молекулярные соединения, принадлежащие классу аллотропных форм углерода (другие — алмаз, карбин и графит) и представляющие собой выпуклые замкнутые многогранники, составленные из чётного числа трёхкоординированных атомов углерода. Отметим, что объекты типа фуллеренов и нанотрубок наблюдались и ранее.
Графен — монослой атомов углерода, полученный в октябре 2004 года в Манчестерском университете (The University Of Manchester). Графен можно использовать, как детектор молекул (NO2), позволяющий детектировать приход и уход единичных молекул. Графен обладает высокой подвижностью при комнатной температуре, благодаря чему как только решат проблему формирования запрещённой зоны в этом полуметалле, обсуждают графен как перспективный материал, который заменит кремний в интегральных микросхемах.
Материалы, разработанные на основе наночастиц с уникальными характеристиками, вытекающими из микроскопических размеров их составляющих.
Углеродные нанотрубки — протяжённые цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной до нескольких сантиметров состоящие из одной или нескольких свёрнутых в трубку гексагональных графитовых плоскостей (графенов) и заканчиваются обычно полусферической головкой
Особенность нанотехнологии заключается в том, что рассматриваемые процессы и совершаемые действия происходят в нанометровом диапазоне пространственных размеров. "Сырьем" являются отдельные атомы, молекулы, молекулярные системы, а не привычные в традиционной технологии микронные или макроскопические объемы материала, содержащие, по крайней мере, миллиарды атомов и молекул. В отличие от традиционной технологии для нанотехнологии характерен "индивидуальный" подход, при котором внешнее управление достигает отдельных атомов и молекул, что позволяет создавать из них как "бездефектные" материалы с принципиально новыми физико-химическими и биологическими свойствами, так и новые классы устройств с характерными нанометровыми размерами.
С начала XXI века в мире поняли перспективу нанотехнологии и правительства разных стран начали активно инвестировать развитие нанотехнологии. Так, например, Германия с 2004 года инвестировала на научные изыскания в области нанотехнологий свыше 300 миллионов евро. Финансовые затраты США, Японии и России еще выше. Так, правительство США с 2004 года выделил 3,7 миллиардов долларов США на исследования и разработки в сфере нанотехнологий. Осознание стратегической важности нанотехнологий привело к тому, что в разных странах на уровне правительств и крупнейших фирм созданы и успешно выполняются программы работ по нанотехнологиям.
С 2005 года насчитываются более 55 стран, ведущих исследования и разработки в нанотехнологии.....



Материалдың толық нұсқасын 50 секундтан кейін жүктеп алыңыз!!!!

Автор: nurgul95 | 12 |


Загрузка...
Читайте также
Дипломная работа: Изучение наноструктуры порошков AL Ni W
Сборник дипломных работ [бесплатно]
Дипломная работа: Изучение наноструктуры порошков AL Ni W
Дипломная работа: Оценка имущества компании «Забота» для целей страхования
Сборник дипломных работ [бесплатно]
Дипломная работа: Оценка имущества компании «Забота» для целей страхования
Дипломная работа: Оценка объектов недвижимости в целях налогообложения (на примере АО «ЕСКО»)
Сборник дипломных работ [бесплатно]
Дипломная работа: Оценка объектов недвижимости в целях налогообложения (на примере АО «ЕСКО»)
Дипломная работа: Моделирование как метод социального прогнозирования
Сборник дипломных работ [бесплатно]
Дипломная работа: Моделирование как метод социального прогнозирования
Дипломная работа: Методика преподавания и технология обработки женкого нарядного комплекта
Сборник дипломных работ [бесплатно]
Дипломная работа: Методика преподавания и технология обработки женкого нарядного комплекта
Дипломная работа: Разработка физической безопасности и контроля доступа для зданий
Сборник дипломных работ [бесплатно]
Дипломная работа: Разработка физической безопасности и контроля доступа для зданий
Дипломная работа: Разработка модел качества данных дистанционного зондирования земли
Сборник дипломных работ [бесплатно]
Дипломная работа: Разработка модел качества данных дистанционного зондирования земли
Открытый урок: Классификация программного обеспечения
Сборник открытых уроков
Открытый урок: Классификация программного обеспечения

RU / Сборник дипломных работ [бесплатно], скачать Современное развитие нанотехнологии бесплатно дипломную работу, база готовых дипломных работ бесплатно, готовые Физика дипломные работы скачать бесплатно, дипломная работа скачать бесплатно казахстан, Современное развитие нанотехнологии, скачать Современное развитие нанотехнологии бесплатно дипломную работу база готовых дипломных работ бесплатно готовые Физика дипломные работы скачать бесплатно дипломная работа скачать бесплатно казахстан Современное развитие нанотехнологии, Дипломная работа: Современное развитие нанотехнологии