Дуговая сталеплавильная печь ДСП-25 в системе электроснабжения завода малого машиностроение

В дуговых электропечах преобразование электрической энергии в тепло происходит в основном в электрическом разряде, протекающем в газовой или паровой среде. В таком разряде можно сосредоточить в сравнительно небольших объёмах большие мощности и получить очень высокие температуры. При этом в камере печи возникают резкие температурные перепады, и поэтому в ней невозможно получить равномерное распределение температур. По этой же причине здесь трудно обеспечить точное регулирование температуры нагрева и, следовательно, проводить термическую обработку. Для плавки металлов дуговая печь удобна, т.к. высокая концентрация энергии позволяет быстро проводить расплавление. Дуговые устройства удобны так же для проведения высокотемпературных химических реакций в жидкой или газовой фазе и подогрева газа. Во всех этих случаях неравномерность нагрева не играет роли, т.к. благодаря теплопроводности и конвекции в жидкой ванне или газовом потоке температура быстро выравнивается.
В данном дипломном проекте я рассчитываю дуговую сталеплавильную печь ёмкостью 25 тонн (ДСП - 25). Печь такого типа относят по классификации к дуговым печам прямого действия. В таких печах дуга горит между электродами и расплавленным металлом, непосредственно нагревая металл. Очаг высокой температуры (дуга) находится около поверхности металла. Благодаря экранирующему действию электродов свод печи частично защищен от непосредственного излучения дуг, поэтому здесь допустимы очень большие объёмные мощности, и можно проводить высокотемпературные процессы. Электроды в таких печах подвешены вертикально и работают в основном на растяжение, и лишь при наклоне печи – на изгиб. Поэтому здесь можно применять сравнительно длинные графитированные электроды большого сечения, допускающие значительные рабочие токи. Дуговые печи могут быть весьма мощными и производительными, и работать на трёхфазном токе. Это крупные мощные трёхфазные печи, предназначенные для плавления металлов с высокой температурой испарения, в основном – сталеплавильные печи. Благодаря технологическим преимуществам в печах этого типа выплавляются в виде слитков, почти все высоколегированные стали и многие конструкционные стали. Кроме того, в них выполняют значительную часть стального фасонного литья. В нашем случае печь выплавляет электротехническую сталь.
1 Технологический процесс
Дуговые печи могут иметь основную или кислую футеровку.
Электротехническая сталь обычно выплавляется в ДСП с основной футеровкой. Повышенная стоимость, которой в электропечах компенсируется улучшением качества получаемого металла и уменьшением угара ценных легирующих.
Выплавка стали, включает в себя следующие операции: расплавление металла, удаление содержащихся в нем вредных примесей и газов (обезуглероживание и дефосфарация), раскисление металла и обессеривание, введение в него нужных легирующих и слив в разливочную машину или ковш.....
Дипломная работа (бесплатно)
Толық

Электрондармен кемтіктердің генерациясы және рекомбинациясы

Термодинамикалық тепе-тең күйде тұрған донорлық жартылай өткізгішті қарастырамыз. Жылулық генерациялану нәтижесінде донорлық қоспаның электрондары өткізгіштік зонаға өтеді. Жеткілікті жоғарғы температурада валенттік зонадағы электрондардың өткізгіштік зонаға өтуі басым болады. 1-суретте стрелкалармен жылулық қозудағы электрондардың ауысулары көрсетілген. Жылулық генерация нәтижесінде пайда болған және кристалл торларының термодинамикалық тепе-теңдіктегі еркін эарядтарды тасмалдаушыларын тепе-теңдік күйдегі зарядтарды тасмалдаушылар деп атайды.
1-суретте өткізгіштік зона мен валенттік зонадағы күйлердің кванттық тығыздығы f0(E), Ферми-Дирак таралу функциясы және сәйкес зоналардың шеттеріне жақын күйлерге ие болатын (штрихталған аудандар) тепе-тең күйдегі n0 электрондар мен p0 кемтіктердің концентрациялары бейнеленген. Еркін зарядты тасмалдаушылардың генерациясы мен қатар рекомбинация процессі жүреді, электрондар валенттік зонадағы еркін күйлерді иеленеді, осының нәтижесінде еркін электрон мен еркін кемтік жоғалады.....
Рефераттар
Толық

Электромагниттік толқын

Электр заряды бір нүктеден екінші нүктеге орын ауыстырып қана қоймай, бір түзудің бойымен шапшаң тербеліс жасайды. Заряд серіппеге ілулі жүк сияқты қозғалып, үлкен жиілікпен тербеледі. Сонда зарядтың тура жанындағы электр өрісі болса, енді зарядтан үлкен ара қашықтықта, айнымалы электр өрісін т. с. с. туғызатын болады.
Тербелуші заряд тудыратын электромагниттік өрістің пайда болуының күрделі процессін біз егжей-тегжейлі қарастырмаймыз. Тек соңғы нәтижені ғана келтіреміз.
Заряд қоршаған кеңістікте, бір-біріне перпендикаляр болып, периодпен өзгеретін электр және магнит өрісінің жүйесі пайда болады да, барған сайын үлкен аймақтарды қамтып жайылады.
Кеңістіктің әр нүктесінде электр және магнит өрістері уақыт бойынша периодты өзгереді. Неғұрлым нүкте зарядтан алысырақ тұрса, өрістердің тербелістері оған соғұрлым кішірек жетеді. Олай болса, зарядтан әр түрлі қашықтықтағы тербелістер әр түрлі фазамен жасалады.
Электромагниттік толқындар бар, екендігінің ақиқаттығына Максвелл аса қатты сенген еді. Бірақ олардың эксперемент жүзінде байқалғанын ол көре алмай кетті. Ол қайтыс болған соң 10 жыл өткенде ғана электромагниттік толқындарды Герц эксперемент жүзінде шығарып алды.
Электромагниттік толқындар айнымалы электр өрісінің айнымалы магнит өрісін тудыруының арқасында пайда болды. Осы айнымалы магнит өрісі өз кезегінде айнымалы электр өрісін тудырады.

Толқындық процестер табиғатта өте кең таралған. Толғындық қозғалысты тудыратын физикалық себептер түрліше болады. Бірақ тербелістер тәрізді толқындардың барлық түрі де сандық мәністе бірдей не бірдей дерлік заңдармен сипатталады. Егер түрліше толқындық құбылыстарды бір-бірімен салыстырып отырса, онда түсінуге қиын деген мәселелердің өзі айқындала түседі.
Толқын дегеніміз не? Толқын деп уақыт бойынша кеністікте таралатын тербелістерді айтады.
Ауада, қаттыденелерде және ұйық ішінде механикалық толқындар серпінділік күштері арқасында пайда болады. Осы күштер дененің жеке бөліктерінің арасын байланыстырып тұрады. ...
Рефераттар
Толық

Электрмен қамтаманың сипаттамалары

Электрмен үздіксіз қамтамасыздандыру жүйесі (ЭҮҚЖ) – А тобының электр қабылдағыштарын электрмен қамтамасыздандырудың ең сенімді, әрі ең сапалы түрі. Бұл А тобында, дегенмен, қосымша қоректендіруді қажетсінетін қабылдағыштар да бар. Бұларға, мәселен, файл- серверлер, көптеген байланыс және телекоммуникация құралдары және қорғаныс жүйелері жатады. Бұл жүйелер аз және орташа қуатты локальды үздіксіз қоректендіру көздер (ҮҚК), аккумуляторлы қоректену блоктар, буферлі аккумуляторлы батареялар арқылы электрмен үздіксіз қамтамасыздандырылады. Қазіргі кезде екі жағынан қоректендіретін
Қондырғылар жасалынып көрілуде. Олардың құрылысы әртүрлі қоректендіру көздеріне қосылған екі қоректену блоктарынан тұрады. Электрмен қамтамасыздандыру жүйесіне қатысты мұндай қосымша қоректендіру технологиялыққа жатады және ЭҮҚЖ-ның принципиалды сұлбасына әсер етпейді.
ЭҮҚЖ- негізгі көздерден электрмен қамтамасыздандырылмаған жағдайда қабылдағыштырды автономды түрде электрмен қамтамасыздандыруға арналған электр қондырғысы. ЭҮҚЖ-ның автономды жұмыс уақыты инфокоммуникациондық жүйе жұмысының аяқталуы есебінен алынады. Ол кезде ақпарат шығынсыз болады, әрі қондырғының істен шығу қаупі төмен болады. Автономды жұмыстың минималды уақыты қашан да қосымша электрмен қамтамасыздандыру көздерін іске қосуға жеткілікті болады, мәселен ДГУ.
ЭҮҚЖ- ның негізін құрайтын үздіксіз қорек көздері төменде қарастырылған. ҮҚК түрлі схемотехникалық база, қуат, конструкцияға ие бола тұрып, қосымша қоректендірудің функционалдық мүмкіндіктерін бойына жинаған. ҮҚК типтерінің бір тобы қалыпты режимде электр қабылдағыштың кірісін КЭ-мен қамтамасыз ете алады. Сыртқы электрмен қамтамасыздандыру жүйесінің қалыпты режимдегі жұмысында ҮҚК-нің қайта жауап беру реакциясын тудырытын электроэнергия сапасының көрсеткіштері ауытқуы мүмкін. Бұған автономды режимнің батареяға ауысуы да жатады. Негізінен бұл кернеу ауытқуы U болып келеді. ҮҚК кірісіндегі кернеудің ауытқу мәні стандартқа сай жіберілетін U өзгерісі кезінде автономды режимге өтіп кетуін тудырмауы қажет. Тәжірибелер көрсеткендей, % диапазонында жатқан кіріс кернеуінің мәні (“кіріс қақпа”) автономды режимге кірмей-ақ жұмыс істеу шарттарын қанағаттандырады. Қалған жағынан ҰҚК электр энергия сапасы көрсеткіштерінің ауытқуына айтарлықтай төзімді. ....
Рефераттар
Толық

Электр қауіпсіздігінің негіздері


Дәрістің мазмұны – адамның тоққа түсіп қалу факторлары және тоқтың адамға әсері, электр қондырғыларының классификациясы келтірілген.
Дәрістің мақсаты – тоққа түсіп қалудың қауіпті факторларын оқып үйрену, электр қауіпсіздігінің техникалық және ұйымдастыру шараларымен және де электр қауіпсіздігі дәрежелері бойынша жұмыс шарттарымен танысу.

1. Адам организміне электр тоғының әсер етуі.

Электр қауіпсіздігі – ол, электромагниттік өрістің, статикалық электрленудің, электрлік доға мен электр тоғының зиянды және қауіпті әсерінен адамдарды қорғауды қамтамасыз ететін ұйымдастырылған және техникалық жұмыстар мен шаралардың жүйесі.
Егер адаманың екі нүктесі арасында потенциалдар айырмасы болса, онда адам денесі арқылы электр тоғы жүреді. Адам бір уақытта жанасқан екі нүктелік тоқ тізбегі арасындағы кернеу – жанасу кернеуі деп аталады.
Дене арқылы жүретін электр тоқ адамға жылулық, биалогиялық және электролиттік әсер етеді.
Тоқтың жылулық әсері электр энергиясының жылуға айналуында сезіледі және ол терінің, тканның және қан тамырларының қызуын тудырады.
Тоқтың биологиялық әсері тоқтың бұлшық еттер арқылы жүруінде оның қысқаруын тудырады.
Тоқтың электролиттік әсері қан құрамының өзгеруіне алып келеді.....
Рефераттар
Толық

ТАРМАҚТАЛҒАН ТІЗБЕК ҮШІН КИРХГОВ ЕРЕЖЕЛЕРІ

Ом заңдары тек қарапайым электр тізбегін есептеу үшін ғана жарамды.Ал күрделі тізбектегі токты аныктау керек болса ,онда жалпыланған заңдылықтар болуы қажет.Сондықтан осындай заңдылықтың түріне заряд пен энергияның сақталу заңының салдары ретінде неміс физигі Кирхгов 1824-1887 ашкан заңдар немесе ережелер жатады.
Кирхговтың бірінші ережесі түйіндерге қатысты оған келетін ток пен одан шығатын ток арасындағы байланысты қарастырады.Тармақталған тізбек деп аталатын тізбекте түйіндер үштен кем емес өткізгіштер тоғысатын кез-келген нүктені айтамыз Біз тұрақты токты қарастырғандықтан,түйінге қанша заряд ағып келсе ,сонша ағып кетуі керек.Егер түйінге кіретін токтарды оң,ал шығатын токтардытеріс деп есептесек,онда мынадай ережені айтуға болады,түйінде тоғысатын ток күштерінің алгебралық қосындысы нөлге тең.I+I-I=0 Мұны былайша түсінуге болады.Егер түйіндегі токтардың алгебралық қосындысы нөлден өзгеше болса,түйінде зарядтар көбейіп не азайып кетер еді де,бұл өз кезегінде түйіндегі потенциалдың және тізбектен ағатын токтың өзгеруіне әкеп соғар еді.Кирхговтың екінші ережесін жалпы түрде энергияның сақталу заңына сүйеніп,тармақталған тізбек үшін Ом заңын қорытындылау арқылы түсіндіруге болады.Тұйықталған жүйені құрайтын әрбір қосылғыштар энергияларының өзгерістерінің қосындысы нолге тең.Сондықтан тұйық тізбек үшін қатысы орындалады.Бұдан кернеудің түсуі екенін ескерсек ,Сонымен Кирхговтың бірінші және екінші ережелеріне сәйкес құрылған тәуелсіз теңдеулердің саны тармақталған тізбектерден өтетін әр түрлі токтардың санына тең болады.Сондықтан электр қозғаушы күші және барлық токты есептеуге болады.
КЕЗ-КЕЛГЕН ТАРМАҚТАЛҒАН ТІЗБЕК ҮШІН ҚҰРЫЛҒАН ШЕҢБЕРЛІК ДИАГРАММАЛАР
• Егер тармақталған тізбектің бір тармағындағы кедергі,мысалы,екінші тармақтағы кедергі өзгеретін болса,ал басқа тармақтардағы кедергі және қоректендіргіштердің Э.Қ.К-і өзгермесе,онда кез-келген тармақтардағы токтар мен кернеулер бір-бірімен түзу сызықты тәуелділікте болады.Бұл тәуелділік тұрақты токқа да және амплитудасы өзгермейтін Э.Қ.К бар синусоидалы токқа да әділетті болады.....
Рефераттар
Толық

Үш фазалық электрлік тізбектер

Электр тізбегінің көп фазалы жүйесі деп жиіліктері бірдей, электр қозғаушы күштері әр түрлі фазалардан тұратын айнымалы токтың бірнеше тізбектерінің жиынын айтады.Көбінесе, практикада электр қозғаушы күштері (кенеуі) шамалары жағынан тең және фазалары бойынша 2π/m – бұрышқа ығысқан (мұндағы m – фаза саны) көп фазалық симметиялық жүйелер қолданылады.
Көп фазалық жүйенің тізбектерінің бөлігін қысқаша айтқанда, фазалар деп атайды. Сонымен фаза терминіне төмендегідей екі түсінік сәйкес келеді: 1) синусоидалық шамалардың өзгеріс сатысын анықтайтын бұрыш және 2) көп фазалы жүйенің белгілі бір құрамы. Бір – біріне қосылған көп фазалық жүйенің электр тізбектерін көп фазалық тізбек деп атайды.
Көп фазалық тізбектердегі электр қозғаушы күшінің , кернеулердің немесе токтардың фазалық жиынтығын көп фазалық жүйелер деп атайды.
Қазіргі таңда барлық көп фазалық жүйелердің ішіндегі ең кең таралғаны үщ фазалық жүйелер, былайша айтқанда, олар бірдей жиілікті және бірлей амплитудалы, ал фазалары жағынан бір – бірімен салыстырғанда, 1200 – қа ығысқан, үш электр қозғаушы күшінің жиынтығынан тұратын – электр қозғаушы күшінің үш фазалық симметриялық жүйесі болып табылады.
Айнымалы токтың үш фазалық жүйесін 1891жылы орыстың атақты өнертапқышы инженер М.О.Доливо – Добровольский ашқан болатын.Онда ол жүйенің негізгі туындысы болып табылатын – генераторлады, трансформаторларды,беріліс желілерін және үш фазалық токтың двигательдерін ойлап тапты және зерттеді.
1891жылы М.О.Доливо – Добровольскийдің басшылығымен дүние жүзінде алғаш рет үш фазалық айнымалы токпен электр энергиясын қашықтыққа беру жұмысы іске асырылды. Кенеуі 15,2 кВ, п.э.к. 79 %, қуаты 220 кВт (сол уақыт үшін рекордтық параметрлер еді) электр энергиясы, желісінің ұзындығы 150 км болатын қашықтыққа беріледі. Қазіргі таңда, үш фазалық жүйелер арқылы қуаты миллион кВт – тен асатын қуаттар мыңнан астам км қашықтықтарға өте жоғары пайдалы әсер коэффициенттерімен беріледі.....
Рефераттар
Толық

СЫЗЫҚТЫ ЭЛЕКТР ТІЗБЕКТЕРІНДЕГІ ӨТПЕЛІ ПРОЦЕСТЕР

Активті кедергісі және индуктивтігі бар реал катушка кернеу көзіне қосылған (1,а-сурет). Тізбектегі кернеулер Кирхгофтың екінші заңы бойынша
(1)
Мұндағы индуктивтік кернеу өздік индукция ЭҚК-не тең де

Ал активті кернеу

Кернеудің осы мәндерін (1) теңдігіне қойса
(2)
Электр көзі кернеуінің мөлшерлі мәні бар шама. Мысалы, пәтерлердегі электр желісінің кернеуі 220 В – тұрақты шама. Осындай мөлшерлі кернеудің әсерінен тізбекте ток кенеттен секіріп өзгерді делік, яғни өте аз уақыт ішінде ток мөлшерлі шамаға жеткен. Ендеше нольге ұмтылғанда токтың уақытқа қатынасы өте үлкен мәнге ие болады, яғни

Токтың өзгерісінің осы мәнін (2) теңдігіне қойса, оң жағы мөлшерлі шама да, сол жағы өте үлкен шама болып, Кирхгофтың екінші заңына қайшы келеді. Олай болса токты өте аз уақыт ішінде секіріп өзгереді деп есептеу қате: ток индуктивті катушкада кенеттен секіріп өзгере алмайды. Мұның себебі катушканың индуктивтігінің болуында – онда пайда болатын өздік индукция ЭҚК-і тудыратын токтың тізбектің тогына кері бағытта болып (Ленц заңы бойынша), оны тез өсірмейтіндігінде. Бірақ катушкада кернеудің секіріп өзгеруі мүмкін.
Енді активті кедергісі (астарларының арасымен аздап ток жүретін) және сыйымдылығы бар конденсатор кернеу көзіне қосылған екен делік (1,б-сурет).
Кирхгофтың екінші заңы бойынша

Немесе
(3)


1-сурет. Реал катушка (а) мен реал конденсатордың (б) орынбасарлық схемалары

Тізбектегі ток сыйымдылыққа және ондағы кернеудің өзгерісіне байланысты, яғни

Токтың осы мәнін (3) теңдігіне қойса
(4)
Қарастырылып отырған тізбекте кернеу кенеттен секіріп өзгеріп, өте аз уақыт ішінде мөлшерлі шамаға жетті десе, нольге ұмтылғанда кернеудің уақытқа қатынасы өте үлкен мәнге ие болады, яғни

Кернеудің өзгерісінің осы мәнін (4) теңдігіне қойса, оң жағы мөлшерлі шама да, ал сол жағы өте үлкен шама болып, Кирхгофтың екінші заңы орындалмай қалады. Ендеше кернеуді кенеттен секіріп өзгереді деп есептеу қате: конденсаторда кернеу өте аз уақыт ішінде секіріп өзгере алмайды. Мұның себебі конденсатордың сыйымдылығының болуында – оның кенеттен зарядталып не зарядсызданып бітпейтіндігінде. Біра конденсаторда токтың секіріп өзгеруі мүмкін. ....
Рефераттар
Толық