Квадрат теңдеулерді шешу тәсілдері. Алгебра, 8 сынып, презентация.


Сабақ тақырыбы:

Квадрат теңдеулерді шешудің тәсілдері.

Сабақ мақсаты: Квадрат теңдеулерді шешудің неше тәсілі бар?

Сабақ міндеті:

Квадрат теңдеулерді қайталап, әр түрлі шешу тәсілдерін білу.

Квадрат теңдеулер

классификациясы

Квадрат теңдеу

толымсыз

толымды

ax2+bx = 0

ax2+c=0

ax2=0

x2+px+q=0

ax2+bx+c = 0

ax2 + bx + c = 0

1) Дискриминант арқылы:

х2 - 4х + 3 = 0

D = (-4)2– 4 ∙ 3 = 16 – 12 = 4 = 22

x1,2 = ;

x1 = 3, x2 = 1

ax2 + bx + c = 0

2) Көбейткіштерге жіктеу:

х2 - 4х + 3 = 0

х2 – 3х – х + 3 = 0

х(х – 3) – (х – 3) = 0

(х – 1)(х – 3) = 0

x1 = 3, x2 = 1

ax2 + bx + c = 0

3) Виет теоремасы бойынша іріктеу тәсілі:

х2 - 4х + 3 = 0

x1 = 3, x2 = 1

ax2 + bx + c = 0

4) Екі мүшенің квадратын айыру тәсілі:

х2 - 4х + 3 = 0

х2 - 4х + 4 – 1 = 0

(х – 2)2 = 1

х – 2 = 1 х – 2 = -1

x1 = 3 x2 = 1

ax2 + bx + c = 0

5) Квадрат теңдеудің коэффициенттерінің қасиеттері бойынша: a + b +c = 0

x1 = 1; x2 =

х2 - 4х + 3 = 0

1 +(–4)+ 3 = 0

x1 = 1 x2 = 3

ax2 + bx + c = 0

6) Коэффициентін аудару тәсілі:

ax2 + bx + c = 0 | a-ға көбейтеміз

a2x2 + abx + ac = 0, y = ax

y2 + by + ac = 0

Мысал: 2 – 11х + 15 = 0

y2 – 11y + 30 = 0

ax2 + bx + c = 0

ax2 + bx + c = 0

7) Графиктік тәсіл:

х2 – х – 2 = 0

х2 = х +2

y = x2 y = x + 2

х=-1 х=2

Қиюшылар туралы теорема:

OB OD = OA OC

1) Центрін табамыз S ;

2) SA радиусы арқылы шеңбер жүргіземіз;

3) x1, x2ні табамыз;

OB OD = OA OC

OC = = =

SK =

SF =

8) Сызғыш пен циркуль арқылы шешу:

ax2 + bx + c = 0

9) Номограмма тәсілі:

х2 – 9х + 8 = 0

х=1 х=8

x2 + px + q = 0

ax2 + bx + c = 0

10) Геометриялық тәсіл

(ал-Хорезми «Алгебра»):

х2 + 10х – 39 = 0;

х2 + 10х = 39

S = x2 + 10x + 25 = 39 + 25 = 64

AB = 8 → x1 = 8 - 2 2,5= 8 – 5 = 3

AB = -8→ x2 = -8 – 5 = -13

Квадрат теңдеуді шешудің 14 тәсілі

I формула бойынша

II формула бойынша

Көбейткіштерге жіктеу арқылы

Виет теоремасы бойынша іріктеу тәсілі

5) Екі мүшенің квадратын айыру тәсілі

6) Квадрат теңдеудің коэффициенттерінің қасиеттері б\ша

7) Коэффициентін аудару тәсілі

8) Графиктік тәсіл

9) Сызғыш пен циркуль арқылы шешу

10) Номограмма тәсілі

11) Геометриялық тәсіл

12) Квадраттар теңдігіне келтіру

13) Безу теоремасын қолдану

14) Горнер схемасын қолдану



Толық нұсқасын 30 секундтан кейін жүктей аласыз!!!


Әлеуметтік желілерде бөлісіңіз:
Facebook | VK | WhatsApp | Telegram | Twitter

Қарап көріңіз 👇



Пайдалы сілтемелер:
» Туған күнге 99 тілектер жинағы: өз сөзімен, қысқаша, қарапайым туған күнге тілек
» Абай Құнанбаев барлық өлеңдер жинағын жүктеу, оқу
» Дастархан батасы: дастарханға бата беру, ас қайыру

Соңғы жаңалықтар:
» 🏡Үй алуды мақсат еткендерге тағы бір жағымды жаңалық😍
» Ораза айт намазы уақыты Қазақстан қалалары бойынша
» Биыл 1 сыныпқа өтініш қабылдау 1 сәуірде басталып, 2024 жылғы 31 тамызға дейін жалғасады.
Пікір жазу