Курстық жұмыс: Математика | Классикалық тұжырымдар есептер

Курстық жұмыс: Математика | Классикалық тұжырымдар есептер казакша Курстық жұмыс: Математика | Классикалық тұжырымдар есептер на казахском языке

Мазмұны

КІРІСПЕ 2
1 ТАРАУ. ТҰЖЫРЫМДАР АЛГЕБРАСЫ 5
1.1. Тұжырым ұғымы 5
1.2. Тұжырымдарға қолданылатын логикалық амалдар. Терістеу 5
1.3 Конъюнкция 6
1. 4 Дизъюнкция 6
1. 5 Эквиваленция 7
1.6 Импликация 7
1.7 Тұжырымдар алгебрасының формулалары 8
1.8 Тұжырымдар алгебрасының пара-пар, тепе-тең ақиқат және тепе-тең жалған формулалары 9
1.9 Негізгі тепе-теңдіктер 10
1.10 Формулаларды тепе-тең түрлендіру 11
1.11 Логика алгебрасының функциялары 11
1.12 Нормал және жетілдірілген формалар 12
1.13 Формулаларды ақиқаттық мәндер кестесі бойынша қалпына келтіру 13
1.14 Логикалық байланыстардың толық жүйелері 14
Тақырып бойынша тесттер 15
2 ТАРАУ. ТҰЖЫРЫМДАР ЕСЕПТЕЛІМІ 17
2.1 Тұжырымдар есептелімі формуласының ұғымы 17
2.2. Дәлелденетін формула ұғымы 18
2.3 Тұжырымдар есептелімінің аксиомалар жүйесі 18
2.4 Шығару ережелері 18
2.5 Дәлелденетін формуланың анықтамасы 19
2.6 Туынды шығару ережелері 19
2.7 Формулаларды гипотезалардан қорытып шығару 21
2.8 Шығарылу ережелері 22
2.9 Тұжырымдар алгебрасы мен тұжырымдар есептелімі арасындағы байланыс 23
Тақырып бойынша тесттер 24
ГЛАВА 3. ПРЕДИКАТТАР ЛОГИКАСЫ 26
3.1 Предикат ұғымы 26
3.2 Предикаттарға логикалық амалдарды қолдану 27
3.3 Кванторлық амалдар 28
3.4 Предикаттар логикасының формуласының ұғымы 29
3.5 Предикаттар логикасының формулаларының тепе-теңдігі 30
3.6 Пренекстік нормал форма 31
3.7 Математикалық тұжырымдар мен анықтамаларды предикаттар логикасының формулалары түрінде жазу 31
Тесты по теме 32
VI ТАРАУ. АЛГОРИТМДЕР ТЕОРИЯСЫНЫҢ ЭЛЕМЕНТТЕРІ 34
4.1 Алгоритм түсінігі және оның қасиеттері 34
4.2. Тьюринг машиналары 35
4.3 Машинаның жұмыс істеу ережелері 35
4.4 Машина мысалдары 36
Тақырып бойынша тесттер 36
КУРС БОЙЫНША ТЕСТТЕР 39
ӘДЕБИЕТТЕР 43


1 ТАРАУ. ТҰЖЫРЫМДАР АЛГЕБРАСЫ

1.1. Тұжырым ұғымы

Бүкіл математикадағы сияқты, біздің курстағы әр бөлімде де бастапқы негізгі ұғымдар бар. Негізгі ұғымдар анықталмайды. Біздің әрқайсысымыздың олар туралы ішкі түсінігіміз бар деп есептеледі. Бұл ішкі түсініктерде математикалық білім саласындағы адамзаттың тарихи тәжірибесі жинақталған. Негізгі ұғымдар анықталмайды, оларға квазианықтамалар, яғни басқа анықталған ұғымдар мен объектілерге сілтеме жасайтын анықтамалар беріледі. Бірінші бөлімде мұндай негізгі анықталған ұғым тұжырымдар болып табылады.
Тұжырым деп ақиқатығы немесе жалғандығы туралы айтуға болатын байланысты баяндамалы сөйлемді айтамыз.
Мысал 1. «2*2=4» (екі көбейту екі тең төрт).
Мысал 2. «Егер натурал сан 6ға бөлінсе, онда ол 3ке бөлінеді».
Мысал 3. Тауық қүс емес.
Мысал 4. 3≥5.
1 және 2 тұжырымдар – ақиқат, ал 3, 4 –жалған. Бір ғана тұжырым болатын айтылымды жай немесе қарапайым деп атайды. Қарапайым тұжырымға мысал болып 1 тұжырымды айтуға болады.
Граматикалық байланыстар көмегімен («және», «немесе», «егер..., онда...», «сонда тек сонда ғана») құрылған тұжырымдарды күрделі деп атайды. Осылайша 2 тұжырым мынадай қарапайым тұжырымдардан тұрады: «натурал сан 6 бөлінеді», «натурал сан 3 бөлінеді». 4 тұжырым «немесе» сөзімен қосылған «3 үлкен 5» және «3 тең 5» тұжырымдар.
Әрі қарай бізді тұжырымдардың мағыналы жағы қызықтырмастан, олар қандай ақиқаттық («ақиқат» немесе «жалған») мәнге ие болатындығы қызықтырады. Тұжырымдар алгебрасында бірдей ақиқаттық мәні бар барлық тұжырымдар алмасымды, яғни бізде ақиқат тұжырым және жалған тұжырым секілді екі тұжырым класы бар.
Қарапайым тұжырымдары латын алфавиттің a,b,c,…,x,y,z,… әріптерімен, ақиқат мәнді А әріппен немесе 1 цифрмен, жалған мәнді Ж әріппен немесе 0 цифрмен белгілейміз.
Егер а ақиқат болса, онда а=1, ал егер жалған болса, а=0 деп жазамыз.

1.2. Тұжырымдарға қолданылатын логикалық амалдар. Терістеу

а тұжырымының терістеуі жаңа тұжырым болып табылады, бұл тұжырым а ақиқат болғанда жалған, ал а жалған болғанда кезде, ақиқат болады.
a терістеу тұжырымы (¬a) деп бегіленеді және «а емес» немесе «дұрыс емес а» деп оқылады. ¬a тұжырымының логикалық мәнін кесте арқылы көрсетуге болады:
Бұл түрдегі кестені ақиқаттық кестесі деп атайды.
Мәселен, «2 кіші 5тен» тұжырымы үшін терістеу болып «2 кіші емес 5тен» тұжырымы болады.
а тұжырым болсын. да тұжырым болғандықтан, тұжырымына терістеу құруға болады, яғни тұжырымы а тұжырымына екілік терістеу болады. және а тұжырымдарының логикалық мәні бірдей.

1.3 Конъюнкция

a және b тұжырымдарының конъюнкциясы деп, егер екі тұжырым да ақиқат болғанда ақиқат және егер кем дегенде біреуі жалған болғанда жалған болатын жаңа тұжырымды айтамыз.
a және b тұжырымдарының конъюнкциясы мына символмен белгіленеді ab (a ּb, a b, a&b) және былай оқылады «a және b». a , b тұжырымдары конъюнкция мүшелері деп аталады. a және b екі тұжырымның барлық мүмкін логикалық мәндерінің конъюнкциясы келесі ақиқат кестеде көрсетілген:

a b ab
1 1 1
1 0 0
0 1 0
0 0 0

Мысалы: «6 2-ге бөлінеді», «6 3-ке бөлінеді» тұжырымы үшін оның конъюнкциясы «6 2-ге бөлінеді және 6 3-ке бөлінеді» тұжырымы болады, бұл ақиқат.
Конъюнкция операциясы анықтамасында көрсетілгендей «және» сөзі логика алгебрасында күнделікті сөйлесудегі сияқты мағынада қолданылады. Бірақ кәдімгі сөйлесуде «және» сөзімен мағынасы әртүрлі екі тұжырымды біріктіру қабылданбаған, ал логика алгебрасында кез-келген екі тұжырым конъюнкциясы қарастырылған.

1. 4 Дизъюнкция

a және b тұжырымдарының дизъюнкциясы деп,егер екі тұжырымның бірі ақиқат болса, ақиқат және егер екеуі де жалған болса, жалған болатын жаңа тұжырымды айтамыз.
a, b тұжырымдардың дизъюнкциясы мына символмен белгіленеді: ab және былай оқылады «a немесе b». a, b тұжырымдары дизъюнкция мүшелері деп аталады.
a және b екі тұжырымның барлық мүмкін логикалық мәндерінің дизъюнкциясы келесі ақиқат кестеде көрсетілген:
1. 5 Эквиваленция

a және b екі тұжырымдарының эквиваленциясы деп егер тұжырымдар бірдей ақиқат немесе жалған болса, ақиқат, ал қалған жағдайларда жалған болатын жаңа тұжырымды айтамыз.
a және b тұжырымдарының эквиваленциясы мына символмен белгіленеді: a~b (ab) және былай оқылады: “a үшін қажетті және жеткілікті b ” немесе “ a сонда және тек сонда ғана, қашан b”. a, b тұжырымдары эквиваленция мүшелері деп аталады. a және b екі тұжырымның барлық мүмкін логикалық мәндерінің эквиваленциясы келесі ақиқат кестеде көрсетілген:
Мысалы: «S төбесі және PQ негізімен берілген SPQ үшбұрышы тең бүйірлі болады, сонда және тек сонда ғана, қашан P= Q» эквиваленциясы ақиқат. “ S төбесі және PQ негізімен берілген SPQ үшбұрышы тең бүйірлі” және “ S төбесі және PQ негізімен берілген SPQ үшбұрышында P= Q ” тұжырымдары бір мезгілде ақиқат немесе жалған.
Эквиваленттілік математикалық дәлелдеуде үлкен роль атқарады. Теоремалардың белгілі бөлігі қажетті және жеткілікті формада құрылады, яғни эквиваленттілік формасында. Бұл жағдайда оның екі элементінің бірі ақиқат немесе жалған екенін біле отырып және эквиваленттіліктің өзінің ақиқаттығын дәлелдеп біз эквиваленттіліктің екінші мүшесінің ақиқат немесе жалған екенін қорытындылаймыз.

1.6 Импликация

a және b екі тұжырымның импликациясы деп, егер a ақиқат, ал b – жалған болса жалған және қалған жағдайда ақиқат болатын жаңа тұжырымды айтамыз.
a, b тұжырым импликациясы былай белгіленеді a b (a  b a b) және былай оқылады “егер a, онда b ” немесе «a дан b шығады». а тұжырымын шарт немесе сілтеме тұжырым, ал b тұжырымын – салдары немесе қорытынды деп атайды.
a және b екі тұжырымның барлық мүмкін логикалық мәндерінің импликациясы келесі ақиқаттық кестеде көрсетілген:
Мысалы, “егер 12 6-ға бөлінсе, онда ол 3-ке бөлінеді” тұжырымы ақиқат. Мұнда ақиқат сілтеме және ақиқат қорытынды.
Импликация математикалық дәлелдеуде үлкен роль атқарады. Теоремалардың белгілі бөлігі қажетті және жеткілікті формада құрылады. Егер бұл жағдайда a ақиқат болып және a b импликацияның ақиқаттығы дәлелденген болса, онда b салдардың ақиқат екенін қорытындылаймыз.
Логикалық амалдармен алғаш танысқанда импликациядан басқаның барлығы мейлінше табиғи түрде енгізілген секілді. Ал импликация анықтамасын енгізуді қабылдауға біздің санамыз қарсылық көрсетіп жатқандай болып көрінеді. Бірақ импликацияның мұндай анықтамасы біздің түйсікті ішкі логикамызға және математикада өте жиі қолданылатын «егер …, онда ххх» конструкциясына сәйкес келетіндігін көрсететін мысал келтіруге болады. Арифметикадан бір теореманы еске түсірейік - Q(x)= «Егер х натурал саны 4-ке бөлінсе онда, ол 2-ге бөлінеді». Бұл теореманың әділдігіне біз күмән келтіреміз, яғни Q(x ) - қа қандай х натурал санын қойсақ та біз ақиқат айтылым аламыз. Белгілеу енгіземіз: А(х)= «х натурал саны 4-ке бөлінеді», В(х)= «х натурал саны 2-ге бөлінеді».
Сонда шығатыны:
Q(x )= А(x ) В(x ) (1)

(1) формулаға х=8, 2, 3 мәндерін қоя отырып келесілерді аламыз: 1 1, 01, 0 0. (1) формулаға 1 0 шарты орындалатындай х-тің мәнін қою мүмкін емес (себебі келтірілген теорема әділ).
Қарапайым тілде «Егер А, онда В» түрдегі сөйлемде А мен В мазмұны жағынан байланысты екенін көреміз. Біздің импликация анықтамасында бұл мүлде міндетті емес. Яғни біз мынадай импликацияны қарастыру құқымыз бар: «Егер бүгін бейсенбі болса, онда 2*2=5», бұл бейсенбіден басқа барлық күні ақиқат, ал бейсенбіде жалған.

1.7 Тұжырымдар алгебрасының формулалары


Тұжырымдарға қолданылатын логикалық амалдары көмегімен берілген тұжырымдардан күрделі тұжырымдарды құруға болады. Операциялардың орындалу реті жақшамен көрсетіледі. Мысалы, x, y, z үш тұжырымдарынан мынадай тұжырымды құруға болады:
және .
Қарапайым тұжырымдардан терістеу, конъюнкция, дизъюнкция, импликация және эквиваленция логикалық амалдарды қолдану көмегімен алынған күрделі тұжырым тұжырымдар алгебрасының формуласы деп аталады.
Тұжырымдар алгебрасының формулаларын латын алфавиттің бас әріптерімен белгілейміз: A, B, C,…,X, Y, Z,…
Жазуды жинақтау үшін формулалардағы амалдарды ретімен орындау келісілген. Басқа барлық операциялардан бұрын конъюнкция орындалады, ал дизъюнкция импликация мен эквиваленттік бұрын орындалады. Бұл амалдардың орындалу ретін анықтайтын жақшалар қойылмауы мүмкін. Егер кейбір формуладан немесе ішформуладан терістеу алынса, ол жағдайда да жақша қойылмайды.
Демек, жоғарыда келтірілген және формулаларды былай жазуға болады:
және
немесе және .
Логика алгебрасында формуланың логикалық мәні оған кіретін қарапайым тұжырымдардың логикалық мәндерімен толығымен анықталады. Мысалы, x=1, y=1, z=0 болғанда (xy)z формуланың логикалық мәні ақиқат болады, яғни (xy)z =1.
Логикалық амалдар сияқты, формуланың барлық мүмкін болған мәндері оның ақиқаттық кестесі көмегімен берілу мүмкін.
Мысалы, xyху формуласы үшін ақиқаттық кестесінің көрінісі төменд
Егер формуланың құрамына n қарапайым тұжырым енетін болса, онда ол нөл және бірден тұратын 2n мән қабылдайды немесе формуланың ақиқаттық кестесі 2n қатардан тұрады деп айтуға болады.

1.8 Тұжырымдар алгебрасының пара-пар, тепе-тең ақиқат және тепе-тең жалған формулалары

Егер логика алгебрасының А және В формулалары олардың құрамына енетін қарапайым тұжырымдарының кез келген мәндерінде бірдей мән қабылдаса, онда бұл формулалар пара-пар деп аталады. Формулалардың пара-парлығын  белгісімен белгілейміз, яғни
А В  А және В формулалары пара-пар.
Егер А формуласы оған кіретін айнымалылардың барлық мәндерінде 1 мәнді қабылдайтын болса, онда бұл формула тепе-тең ақиқат (немесе тавтология) деп аталады.
Егер А формуласы оған кіретін айнымалылардың барлық мәндерінде 0 мәнді қабылдайтын болса, онда бұл формула тепе-тең жалған (немесе қарама-қайшылық) деп аталады.
Пара-парлық және эквиваленттік ұғымдары арасында мынадай байланыс бар: егер А және В формулалар пара-пар болса, онда АВ формуласы – тавтология, және керісінше, егер АВ формуласы тавтология болса, онда А және В формулалары пара-пар болады.

1.9 Негізгі тепе-теңдіктер

Теорема 1 Келесе тепе-теңдіктер орындалады:
а bab;
a~b  (а b)( b a)  (ab)( ab)  (ab)  (ab)
Осы тепе-теңдіктердің кез-келгенін ақиқаттық кестесі көмегімен дәлелдеуге болады.
Келтірілген тепе-тең көрінетіндей,  және ~ амалдары ,  арқылы ¬ өрнектеледі. Кейінірек ,  және  арқылы айтылымдар алгебрасының кез-келген амалын өрнектеуге болатыны көрсетіледі. Сол себепті біз басты назарды осы амалдардың қасиеттерін зерттеуге аударамыз. Оларды айтылымдар алгебрасының буль амалдары деп атайды.
Теорема 2 Айтылымдар алгебрасының булдік амалдары үшін келесі 19 тепе-теңдік орындалады:
0. – екі еселі терістеу заңы
– коммутативтік заңдары
– ассоциативтік заңдары
– дистрибутивтік заңдары
–идемпотенттік заңдары
– де Морган заңдары
– 0 мен 1 заңдары
– жұту заңдары
– үшіншісі өшірілген заңы
– қайшылық заңы
Бұлардың кез-келгенін ақиқаттық кесте көмегімен дәлелдеуге болады.
1.10 Формулаларды тепе-тең түрлендіру

Тепе-теңдіктерді пайдаланып, формуланы немесе оның бөлігін оған пара-пар формулаға ауыстыруға болады. Мұндай түрлендірулер тепе-тең түрлендірлер деп аталады.
Тепе-тең түрлендірулер тепе-теңдіктерді дәлелдеу, формуланы берілген түрге келтіру, формуланы ықшамдау үшін қолданылады.
Егер А формуланың құрамына оған пара-пар В формулаға қарағанда аз әріптер мен логикалық амалдар кіретін болса, онда А формуласы В дан ықшам деп саналады. Әдетде эквиваленция және импликация амалдары дизъюнкция және конъюнкция амалдарына ауыстырылады, ал терістеу қарапайым тұжырымдардан алынады.

1.11 Логика алгебрасының функциялары

Жоғарыда айтылғандай, логика алгебрасы формуласының мәні бұл формулаға кіретін тұжырымдардың мәндеріне тәуелді. Сондықтан логика алгебрасының формуласы оған кіретін қарапайым тұжырымдардың функциясы болады.
Мысалы, формуласы үш айнымалының f(x,y,z) функциясы болады. Бұл функция және оның аргументтері тек нөл немесе бір екі мәннің біреуін қабылдайды.
Анықтама Функцией алгебры логики n переменных (или функций Буля) называется функция n переменных, где каждая переменная принимает два значения: 0 и 1, и при этом функция может принимать только одно из двух значений: 0 или 1.
Ясно, что тождественно истинные и тождественно ложные формулы алгебры логики представляют собой постоянные функции, а две равносильные ......
Бұл дипломдық, курстық немесе ғылыми жұмысты өзіңіз жазуға көмек ретінде ғана пайдаланыңыз!!!



Материалдың толық нұсқасын 50 секундтан кейін жүктеп алыңыз!!!!


loading...


KZ / Курстық жұмыстар жинағы [тегін], курстык Классикалық тұжырымдар есептер жумыс курстық жұмыс дайын жоба курсовая работа, сборник готовых курсовых работ на казахском языке, скачать бесплатно готовые курсовые работы проекты на казахском, дайын курстык жумыстар жобалар Математика курстық жұмыстар, Классикалық тұжырымдар есептер, курстык Классикалық тұжырымдар есептер жумыс курстық жұмыс дайын жоба курсовая работа сборник готовых курсовых работ на казахском языке скачать бесплатно готовые курсовые работы проекты на казахском дайын курстык жумыстар жобалар Математика курс, Курстық жұмыс: Математика | Классикалық тұжырымдар есептер дипломдық жұмыс тақырыптары дипломдык жумыс дипломдық жоба тақырыптарыкурстық жұмыс тақырыптары педагогика курстық жұмыс тегін курстық жұмыс курстық жұмыс тақырыптары педагогика курстық жұмыс тегін